Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.104
Filtrar
1.
Scand J Immunol ; 99(5): e13362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38605563

RESUMO

T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1ß (IL-1ß), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.


Assuntos
Aterosclerose , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Macrófagos/metabolismo , Lipoproteínas LDL/metabolismo , Aterosclerose/genética , Células Espumosas/patologia , Citocinas/metabolismo , Interleucina-6/metabolismo , Linfócitos T Auxiliares-Indutores/metabolismo , Granulócitos/metabolismo
2.
Sci Rep ; 14(1): 9471, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658568

RESUMO

Most metastases in breast cancer occur via the dissemination of tumor cells through the bloodstream. How tumor cells enter the blood (intravasation) is, however, a poorly understood mechanism at the cellular and molecular levels. Particularly uncharacterized is how intravasation is affected by systemic nutrients. High levels of systemic LDL-cholesterol have been shown to contribute to breast cancer progression and metastasis in various models, but the cellular and molecular mechanisms involved are still undisclosed. Here we show that a high- cholesterol diet promotes intravasation in two mouse models of breast cancer and that this could be reverted by blocking LDL binding to LDLR in tumor cells. Moreover, we show that LDL promotes vascular invasion in vitro and the intercalation of tumor cells with endothelial cells, a phenotypic change resembling vascular mimicry (VM). At the molecular level, LDL increases the expression of SERPINE2, previously shown to be required for both VM and intravasation. Overall, our manuscript unravels novel mechanisms by which systemic hypercholesterolemia may affect the onset of metastatic breast cancer by favouring phenotypic changes in breast cancer cells and increasing intravasation.


Assuntos
Neoplasias da Mama , Receptores de LDL , Animais , Receptores de LDL/metabolismo , Receptores de LDL/genética , Feminino , Camundongos , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Invasividade Neoplásica , Colesterol na Dieta/efeitos adversos , LDL-Colesterol/metabolismo , LDL-Colesterol/sangue , Lipoproteínas LDL/metabolismo , Colesterol/metabolismo , Colesterol/sangue
3.
Discov Med ; 36(182): 571-580, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531797

RESUMO

BACKGROUND: The apoptosis of vascular smooth muscle cells (VSMCs) contributes to the progression of atherosclerosis (AS). Long intergenic non-protein coding RNA 1128 (LINC01128) has been implicated in AS, and this study aims to uncover the role and mechanism of LINC01128 in regulating oxidized low-density lipoprotein (oxLDL)-induced VSMCs. METHODS: The position of LINC01128 in cells and its target genes were predicted using bioinformatics. The localization of LINC01128 in human VSMCs was determined through fluorescence in situ hybridization. VSMCs were transfected, and the interaction between LINC01128 and fucosyltransferase 8 (FUT8) was validated by chromatin immunoprecipitation assay. The apoptotic VSMC model was established using oxLDL. LINC01128 expression in VSMCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and FUT8 expression was detected by qRT-PCR and western blot. VSMC viability, migration, invasion abilities, and apoptosis were assessed using cell counting kit-8, transwell assay, and flow cytometry, respectively. RESULTS: OxLDL (200 µg/mL) upregulated the expression of LINC01128 and FUT8 mRNA, as well as FUT8 protein, in VSMCs. LINC01128 was expressed in the nucleus of VSMCs and bound to FUT8. Knockdown of LINC01128 alleviated the inhibitory effects of oxLDL (200 µg/mL) on viability, migration, and invasion, and mitigated the promotion of apoptosis and FUT8 expression in VSMCs. On the other hand, FUT8 overexpression enhanced the suppressive effects of oxLDL (200 µg/mL) on viability, migration, and invasion activities, and amplified the facilitating effect of oxLDL on apoptosis in VSMCs. Moreover, FUT8 overexpression reversed the impact of LINC01128 silencing on viability, migration, invasion, and apoptosis in oxLDL-stimulated VSMCs. CONCLUSION: The knockdown of LINC01128 downregulates FUT8, inhibiting the progression of VSMCs in AS.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Músculo Liso Vascular/metabolismo , Hibridização in Situ Fluorescente , Aterosclerose/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Apoptose , Proliferação de Células , MicroRNAs/metabolismo , Movimento Celular , Células Cultivadas
4.
Arterioscler Thromb Vasc Biol ; 44(4): 946-953, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450510

RESUMO

BACKGROUND: Women with a history of preeclampsia have evidence of premature atherosclerosis and increased risk of myocardial infarction and stroke compared with women who had a normotensive pregnancy. Whether this is due to common risk factors or a direct impact of prior preeclampsia exposure has never been tested in a mouse atherosclerosis model. METHODS: Pregnant LDLR-KO (low-density lipoprotein receptor knockout; n=35) female mice were randomized in midgestation to sFlt1 (soluble fms-like tyrosine kinase 1)-expressing adenovirus or identical control adenovirus. Postpartum, mice were fed high-fat diet for 8 weeks to induce atherogenesis. Comparison between the control and preeclampsia models was made for metabolic parameters, atherosclerosis burden and composition by histology, plaque inflammation by flow cytometry, and aortic cytokines and inflammatory markers using a cytokine array. RESULTS: In pregnant LDLR-KO mice, sFlt1 adenovirus significantly induced serum sFlt1, blood pressure, renal endotheliosis, and decreased pup viability. After 8 weeks of postpartum high fat feeding, body weight, fasting glucose, plasma cholesterol, HDL (high-density lipoprotein), and LDL (low-density lipoprotein) were not significantly different between groups with no change in aortic root plaque size, lipid content, or necrotic core area. Flow cytometry demonstrated significantly increased CD45+ aortic arch leukocytes and CD3+T cells and aortic lysate contained more CCL (CC motif chemokine ligand) 22 and fetuin A and decreased expression of IGFBP6 (insulin-like growth factor-binding protein 6) and CCL21 in preeclampsia-exposed mice compared with controls. CONCLUSIONS: In atherogenic LDLR-KO mice, exposure to sFlt1-induced preeclampsia during pregnancy increases future atherosclerotic plaque inflammation, supporting the concept that preeclampsia directly exacerbates atherosclerotic inflammation independent of preexisting risk factors. This mechanism may contribute to ischemic vascular disease in women after preeclampsia pregnancy.


Assuntos
Doenças da Aorta , Aterosclerose , Placa Aterosclerótica , Pré-Eclâmpsia , Humanos , Feminino , Animais , Camundongos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Doenças da Aorta/genética , Camundongos Knockout , Aterosclerose/genética , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Receptores de LDL/genética , Citocinas , Camundongos Endogâmicos C57BL
5.
Free Radic Biol Med ; 216: 106-117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461872

RESUMO

Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.


Assuntos
Aterosclerose , Animais , Camundongos , Apolipoproteínas/efeitos adversos , Apolipoproteínas/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Endotélio/metabolismo , Lipoproteínas LDL/metabolismo , Estresse Oxidativo
6.
J Ethnopharmacol ; 327: 118006, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442806

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY: The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS: The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 µg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS: The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1ß (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION: HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.


Assuntos
Aterosclerose , Crataegus , Fosfolipases A2 Secretórias , Placa Aterosclerótica , Camundongos , Animais , Crataegus/química , Quercetina/uso terapêutico , Fosfolipases A2 Secretórias/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Espectrometria de Massas em Tandem , Aterosclerose/metabolismo , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Flavonoides/uso terapêutico , Lipoproteínas LDL/metabolismo , Transdução de Sinais , Colesterol/metabolismo , Camundongos Knockout , Apolipoproteínas E/genética
7.
Emerg Microbes Infect ; 13(1): 2327385, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38514916

RESUMO

Several cellular factors have been reported to be required for replication of classical swine fever virus (CSFV), a member of the genus Pestivirus within the family Flaviviridae. However, many steps of its replication cycle are still poorly understood. The low-density lipoprotein receptor (LDLR) is involved in cell entry and post-entry processes of different viruses including other members of the Flaviviridae. In this study, the relevance of LDLR in replication of CSFV and another porcine pestivirus, Bungowannah pestivirus (BuPV), was investigated by antibody-mediated blocking of LDLR and genetically engineered porcine cell lines providing altered LDLR expression levels. An LDLR-specific antibody largely blocked infection with CSFV, but had only a minor impact on BuPV. Infections of the genetically modified cells confirmed an LDLR-dependent replication of CSFV. Compared to wild type cells, lower and higher expression of LDLR resulted in a 3.5-fold decrease or increase in viral titers already 20 h post infection. Viral titers were 25-fold increased in LDLR-overexpressing cells compared to cells with reduced LDLR expression at 72 h post infection. The varying LDLR expression levels had no clear effect on permissivity to BuPV. A decoy receptor assay using recombinant soluble LDLR provided no evidence that LDLR may function as a receptor for CSFV or BuPV. Differences in their dependency on LDLR suggest that CSFV and BuPV likely use different mechanisms to interact with their host cells. Moreover, this study reveals similarities in the replication cycles of CSFV and other members of the family Flaviviridae that are dependent on LDLR.


Assuntos
Vírus da Febre Suína Clássica , Pestivirus , Suínos , Animais , Vírus da Febre Suína Clássica/genética , Pestivirus/fisiologia , Linhagem Celular , Lipoproteínas LDL/metabolismo , Replicação Viral
8.
Biol Pharm Bull ; 47(3): 641-651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508744

RESUMO

Recently, mitochondrial dysfunction has gained attention as a causative factor in the pathogenesis and progression of age-related macular degeneration (AMD). Mitochondrial damage plays a key role in metabolism and disrupts the balance of intracellular metabolic pathways, such as oxidative phosphorylation (OXPHOS) and glycolysis. In this study, we focused on oxidized low-density lipoprotein (ox-LDL), a major constituent of drusen that accumulates in the retina of patients with AMD, and investigated whether it could be a causative factor for metabolic alterations in retinal pigment epithelial (RPE) cells. We found that prolonged exposure to ox-LDL induced changes in fatty acid ß-oxidation (FAO), OXPHOS, and glycolytic activity and increased the mitochondrial reactive oxygen species production in RPE cells. Notably, the effects on metabolic alterations varied with the concentration and duration of ox-LDL treatment. In addition, we addressed the limitations of using ARPE-19 cells for retinal disease research by highlighting their lower barrier function and FAO activity compared to those of induced pluripotent stem cell-derived RPE cells. Our findings can aid in the elucidation of mechanisms underlying the metabolic alterations in AMD.


Assuntos
Degeneração Macular , Epitélio Pigmentado da Retina , Humanos , Epitélio Pigmentado da Retina/metabolismo , Lipoproteínas LDL/metabolismo , Estresse Oxidativo , Células Epiteliais , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia
9.
Cell Signal ; 117: 111092, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38331013

RESUMO

SUMO-specific protease 3 (SENP3) participates in the removal of SUMOylation and maintains the balance of the SUMO system, which ensures normal functioning of substrates and cellular activities. In the present study, we found that SENP3 expression was significantly reduced in ox-LDL-stimulated macrophages. SENP3 overexpression suppressed and SENP3 knockdown promoted macrophage foam cell formation. Moreover, SENP3 inhibited cholesterol uptake, CD36 expression, and NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome activation in ox-LDL-stimulated macrophages. Ox-LDL-stimulated NLRP3 SUMOylation was reduced by SENP3. Blocking NLRP3 SUMOylation inhibited foam cell formation and NLRP3 inflammasome activation. Thus, this study revealed that SENP3 inhibits macrophage foam cell formation by deSUMOylating NLRP3 and regulating NLRP3 inflammasome activation, which may provide a potentially innovative approach to treatment of atherosclerosis.


Assuntos
Células Espumosas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Espumosas/metabolismo , Inflamassomos/metabolismo , Peptídeo Hidrolases/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Endopeptidases/metabolismo
10.
Hypertension ; 81(4): 861-875, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38361240

RESUMO

BACKGROUND: Chemerin, an inflammatory adipokine, is upregulated in preeclampsia, and its placental overexpression results in preeclampsia-like symptoms in mice. Statins may lower chemerin. METHODS: Chemerin was determined in a prospective cohort study in women suspected of preeclampsia and evaluated as a predictor versus the sFlt-1 (soluble fms-like tyrosine kinase-1)/PlGF (placental growth factor) ratio. Chemerin release was studied in perfused placentas and placental explants with or without the statins pravastatin and fluvastatin. We also addressed statin placental passage and the effects of chemerin in chorionic plate arteries. RESULTS: Serum chemerin was elevated in women with preeclampsia, and its addition to a predictive model yielded significant effects on top of the sFlt-1/PlGF ratio to predict preeclampsia and its fetal complications. Perfused placentas and explants of preeclamptic women released more chemerin and sFlt-1 and less PlGF than those of healthy pregnant women. Statins reversed this. Both statins entered the fetal compartment, and the fetal/maternal concentration ratio of pravastatin was twice that of fluvastatin. Chemerin constricted plate arteries, and this was blocked by a chemerin receptor antagonist and pravastatin. Chemerin did not potentiate endothelin-1 in chorionic plate arteries. In explants, statins upregulated low-density lipoprotein receptor expression, which relies on the same transcription factor as chemerin, and NO release. CONCLUSIONS: Chemerin is a biomarker for preeclampsia, and statins both prevent its placental upregulation and effects, in an NO and low-density lipoprotein receptor-dependent manner. Combined with their capacity to improve the sFlt-1/PlGF ratio, this offers an attractive mechanism by which statins may prevent or treat preeclampsia.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Pré-Eclâmpsia , Humanos , Gravidez , Feminino , Animais , Camundongos , Placenta/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fator de Crescimento Placentário , Pravastatina/farmacologia , Regulação para Cima , Estudos Prospectivos , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/prevenção & controle , Fluvastatina/metabolismo , Fluvastatina/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Biomarcadores , Quimiocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
11.
Cell Signal ; 117: 111114, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387686

RESUMO

Obesity has long been thought to be a main cause of hyperlipidemia. As a systemic disease, the impact of obesity on organs, tissues and cells is almost entirely negative. However, the relationship between obesity and bone loss is highly controversial. On the one hand, obesity has long been thought to have a positive effect on bone due to increased mechanical loading on the skeleton, conducive to increasing bone mass to accommodate the extra weight. On the other hand, obesity-related metabolic oxidative modification of low-density lipoprotein (LDL) in vivo causes a gradual increase of oxidized LDL (ox-LDL) in the bone marrow microenvironment. We have reported that low-density lipoprotein receptor-related protein 6 (LRP6) acts as a receptor of ox-LDL and mediates the bone marrow stromal cells (BMSCs) uptake of ox-LDL. We detected elevated serum ox-LDL in obese mice. We found that ox-LDL uptake by LRP6 led to an increase of intracellular reactive oxygen species (ROS) in BMSCs, and N-acetyl-L-cysteine (NAC) alleviated the cellular senescence and impairment of osteogenesis induced by ox-LDL. Moreover, LRP6 is a co-receptor of Wnt signaling. We found that LRP6 preferentially binds to ox-LDL rather than dickkopf-related protein 1 (DKK1), both inhibiting Wnt signaling and promoting BMSCs senescence. Mesoderm development LRP chaperone (MESD) overexpression inhibits ox-LDL binding to LRP6, attenuating oxidative stress and BMSCs senescence, eventually rescuing bone phenotype.


Assuntos
Medula Óssea , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Camundongos , Medula Óssea/metabolismo , Proteínas de Transporte/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Obesidade/complicações , Estresse Oxidativo
12.
Food Chem Toxicol ; 186: 114519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369053

RESUMO

N-Nitrosodiethylamine (NDEA), a carcinogen in some foods and medications, is linked to liver damage similar to non-alcoholic fatty liver disease (NAFLD). This study explores how NDEA disrupts liver lipid metabolism. Sprague-Dawley rats were given two doses of NDEA (100 mg/kg) orally, 24 h apart. Liver response was assessed through tissue staining, blood tests, and biochemical markers, including fatty acids, lipid peroxidation, and serum very-low density lipoprotein (VLDL) levels. Additionally, lipidomic analysis of liver tissues and serum was performed. The results indicated significant hepatic steatosis (fat accumulation in the liver) following NDEA exposure. Blood analysis showed signs of inflammation and liver damage. Biochemical tests revealed decreased liver protein synthesis and specific enzyme alterations, suggesting liver cell injury but maintaining mitochondrial function. Increased fatty acid levels without a rise in lipid peroxidation were observed, indicating fat accumulation. Lipidomic analysis showed increased polyunsaturated triglycerides in the liver and decreased serum VLDL, implicating impaired VLDL transport in liver dysfunction. In conclusion, NDEA exposure disrupts liver lipid metabolism, primarily through the accumulation of polyunsaturated triglycerides and impaired fat transport. These findings provide insight into the mechanisms of NDEA-induced liver injury and its progression to hepatic steatosis.


Assuntos
Dietilnitrosamina , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Triglicerídeos/metabolismo , Dietilnitrosamina/toxicidade , Lipoproteínas VLDL/metabolismo , Ratos Sprague-Dawley , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas LDL/metabolismo , Dieta Hiperlipídica
13.
Circ Res ; 134(7): e34-e51, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375634

RESUMO

BACKGROUND: Many cardiovascular pathologies are induced by signaling through G-protein-coupled receptors via Gsα (G protein stimulatory α subunit) proteins. However, the specific cellular mechanisms that are driven by Gsα and contribute to the development of atherosclerosis remain unclear. METHODS: High-throughput screening involving data from single-cell and bulk sequencing were used to explore the expression of Gsα in atherosclerosis. The differentially expression and activity of Gsα were analyzed by immunofluorescence and cAMP measurements. Macrophage-specific Gsα knockout (Mac-GsαKO) mice were generated to study the effect on atherosclerosis. The role of Gsα was determined by transplanting bone marrow and performing assays for foam cell formation, Dil-ox-LDL (oxidized low-density lipoprotein) uptake, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS: ScRNA-seq showed elevated Gnas in atherosclerotic mouse aorta's cholesterol metabolism macrophage cluster, while bulk sequencing confirmed increased GNAS expression in human plaque macrophage content. A significant upregulation of Gsα and active Gsα occurred in macrophages from human and mouse plaques. Ox-LDL could translocate Gsα from macrophage lipid rafts in short-term and promote Gnas transcription through ERK1/2 activation and C/EBPß phosphorylation via oxidative stress in long-term. Atherosclerotic lesions from Mac-GsαKO mice displayed decreased lipid deposition compared with those from control mice. Additionally, Gsα deficiency alleviated lipid uptake and foam cell formation. Mechanistically, Gsα increased the levels of cAMP and transcriptional activity of the cAMP response element binding protein, which resulted in increased expression of CD36 and SR-A1. In the translational experiments, inhibiting Gsα activation with suramin or cpGN13 reduced lipid uptake, foam cell formation, and the progression of atherosclerotic plaques in mice in vivo. CONCLUSIONS: Gsα activation is enhanced during atherosclerotic progression and increases lipid uptake and foam cell formation. The genetic or chemical inactivation of Gsα inhibit the development of atherosclerosis in mice, suggesting that drugs targeting Gsα may be useful in the treatment of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/patologia , Transdução de Sinais
14.
J Vet Med Sci ; 86(4): 358-362, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325837

RESUMO

This study was carried out as an observational study in order to examine the difference of change in serum very low-density lipoprotein (VLDL) between primiparous and multiparous cows. Twenty-one clinically healthy cows (10 primiparous and 11 multiparous) were selected at 21 days prior to expected calving. Blood samples were collected in the morning (before feeding) on days -21, -7, 7, 21 and 56 days in milk (DIM). At 7 and 21 DIM, the serum non-esterified fatty acid concentration of multiparous cows was significantly higher than that of primiparous cows. The serum ß-hydroxybutyrate concentration was also markedly higher in multiparous cows than in primiparous cows at 21 DIM. These results suggested that the degree of negative energy balance was greater in multiparous cows than in primiparous cows during this period. In both, serum VLDL concentrations decreased at over 7 DIM, increased at 21 DIM, and then decreased at 56 DIM. On the other hand, triglyceride and total protein concentrations of VLDL in multiparous cows were significantly lower than in primiparous cows at 21 DIM. This suggests that multiparous cows have poor triglyceride secretion from the liver and that they become more susceptible to hepatic lipidosis.


Assuntos
Lipoproteínas LDL , Paridade , Animais , Bovinos , Feminino , Gravidez , Lactação , Lipoproteínas LDL/metabolismo , Leite/metabolismo , Triglicerídeos/metabolismo
15.
Microvasc Res ; 153: 104667, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38307406

RESUMO

Extracellular signal-regulated kinase (Erk)-5 is a key mediator of endothelial cell homeostasis, and its inhibition causes loss of critical endothelial markers leading to endothelial dysfunction (ED). Circulating oxidized low-density lipoprotein (oxLDL) has been identified as an underlying cause of ED and atherosclerosis in metabolic disorders. Silymarin (Sym), a flavonolignan, possesses various pharmacological activities however its preventive mechanism in ED warrants further investigation. Here, we have examined the effects of Sym in regulating the expression of Erk-5 and ameliorating ED using in vitro and in vivo models. Primary human umbilical vein endothelial cells (pHUVECs) viability was measured by MTT assay; mRNA and protein expression by RT-qPCR and Western blotting; tube-formation assay was performed to examine endothelialness. In in-vivo experiments, normal chow-fed mice (control) or high-fat diet (HFD)-fed mice were administered Sym or Erk-5 inhibitor (BIX02189) and body weight, blood glucose, plasma-LDL, oxLDL levels, and expression of EC markers in the aorta were examined. Sym (5 µg/ml) maintained the viability and tube-formation ability of oxLDL exposed pHUVECs. Sym increased the expression of Erk-5, vWF, and eNOS and decreased ICAM-1 at transcription and translation levels in oxLDL-exposed pHUVECs. In HFD-fed mice, Sym reduced the body weight, blood glucose, LDL-cholesterol, and oxLDL levels, and increased the levels of vWF and eNOS along with Erk-5 and decreased the level of ICAM-1 in the aorta. These data suggest that Sym could be a potent anti-atherosclerotic agent that could elevate Erk-5 level in the ECs and prevent ED caused by oxidized LDL during HFD-induced obesity in mice.


Assuntos
Aterosclerose , Silimarina , Humanos , Animais , Camundongos , Molécula 1 de Adesão Intercelular , Transdução de Sinais , Células Cultivadas , Silimarina/efeitos adversos , Glicemia , Fator de von Willebrand , Lipoproteínas LDL/toxicidade , Lipoproteínas LDL/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/induzido quimicamente , Peso Corporal
16.
Sci Rep ; 14(1): 3547, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347122

RESUMO

Cholesterol deposition in intimal macrophages leads to foam cell formation and atherosclerosis. Reverse cholesterol transport (RCT), initiated by efflux of excess cholesterol from foam cells, counteracts atherosclerosis. However, targeting RCT by enhancing cholesterol efflux was so far accompanied by adverse hepatic lipogenesis. Here, we aimed to identify novel natural enhancers of macrophage cholesterol efflux suitable for the prevention of atherosclerosis. Plant extracts of an open-access library were screened for their capacity to increase cholesterol efflux in RAW264.7 macrophages trace-labeled with fluorescent BODIPY-cholesterol. Incremental functional validation of hits yielded two final extracts, elder (Sambucus nigra) and bitter orange (Citrus aurantium L.) that induced ATP binding cassette transporter A1 (ABCA1) expression and reduced cholesteryl ester accumulation in aggregated LDL-induced foam cells. Aqueous elder extracts were subsequently prepared in-house and both, flower and leaf extracts increased ABCA1 mRNA and protein expression in human THP-1 macrophages, while lipogenic gene expression in hepatocyte-derived cells was not induced. Chlorogenic acid isomers and the quercetin glycoside rutin were identified as the main polyphenols in elder extracts with putative biological action. In summary, elder flower and leaf extracts increase macrophage ABCA1 expression and reduce foam cell formation without adversely affecting hepatic lipogenesis.


Assuntos
Aterosclerose , Extratos Vegetais , Sambucus nigra , Sambucus , Humanos , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Lipogênese , Colesterol/metabolismo , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo
17.
Int Immunopharmacol ; 130: 111751, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38402833

RESUMO

BACKGROUND AND AIMS: Atherosclerosis (AS) is a continuously low-grade inflammatory disease, and monocyte-derived macrophages play a vital role in AS pathogenesis. Regulatory factor X1 (RFX1) has been reported to participate in differentiation of various cells. Our previous report showed that RFX1 expression in CD14+ monocytes from AS patients was decreased and closely related to AS development. Macrophages mostly derive from monocytes and play an important role in AS plaque formation and stability. However, the functions of RFX1 in the formation of macrophage-derived foam cells and consequent AS development are unclear. METHODS: We explored the effects of RFX1 on oxidation low lipoprotein (ox-LDL)-stimulated foam cell formation and CD36 expression by increasing or silencing Rfx1 expression in mouse peritoneal macrophages (PMAs). The ApoE-/-Rfx1f/f or ApoE-/-Rfx1f/f Lyz2-Cre mice fed a high-fat diet for 24 weeks were used to further examine the effect of RFX1 on AS pathogenesis. We then performed dual luciferase reporter assays to study the regulation of RFX1 for CD36 transcription. RESULTS: Our results demonstrate that RFX1 expression was significantly reduced in ox-LDL induced foam cells and negatively correlated with lipid uptake in macrophages. Besides, Rfx1 deficiency in myeloid cells aggravated atherosclerotic lesions in ApoE-/- mice. Mechanistically, RFX1 inhibited CD36 expression by directly regulating CD36 transcription in macrophages. CONCLUSIONS: The reduction of RFX1 expression in macrophages is a vital determinant for foam cell formation and the initiation of AS, proving a potential novel approach for the treatment of AS disease.


Assuntos
Aterosclerose , Antígenos CD36 , Células Espumosas , Animais , Humanos , Camundongos , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Células Espumosas/citologia , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Fator Regulador X1/metabolismo , Antígenos CD36/metabolismo
18.
Biomed Pharmacother ; 172: 116268, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38359489

RESUMO

Atherosclerosis is a lipid-driven inflammatory arterial disease, with one crucial factor is oxidized low-density lipoprotein (ox-LDL), which can induce endothelial dysfunction through endoplasmic reticulum stress (ERS). Interleukin-37 (IL-37) exerts vascular protective functions. This study aims to investigates whether IL-37 can alleviate ERS and autophagy induced by ox-LDL, therely potentialy treating atherosclerosis. We found that ox-LDL enhances the wound healing rate in Rat Coronary Artery Endothelial Cells (RCAECs) and IL-37 reduce the ox-LDL-induced pro-osteogenic response, ERS, and autophagy by binding to Smad3. In RCAECs treated with ox-LDL and recombinant human IL-37, the wound healing rate was mitigated. The expression of osteogenic transcription factors and proteins involved in the ERS pathway was reduced in the group pretreated with IL-37 and ox-LDL. However, these responses were not alleviated when Smads silenced. Electron microscopy revealed that the IL-37/Smad3 complex could suppress endoplasmic reticulum autophagy under ox-LDL stimulation. Thus, IL-37 might treat atherosclerosis through its multi-protective effect by binding Smad3.


Assuntos
Aterosclerose , Células Endoteliais , Interleucina-1 , Animais , Humanos , Ratos , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Fatores de Transcrição/metabolismo , Interleucina-1/uso terapêutico
19.
Eur J Pharmacol ; 966: 176352, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38290567

RESUMO

BACKGROUND: Curcumin nicotinate (Curtn), derived from curcumin and niacin, reduces serum LDL-C levels, partly due to its influence on PCSK9. This study investigates IDOL's role in Curtn's lipid-lowering effects. OBJECTIVE: To elucidate Curtn's regulation of the IDOL/LDLR pathway and potential molecular mechanisms in hepatocytes. METHODS: Differential metabolites in Curtn-treated HepG2 cells were identified via LC-MS. Molecular docking assessed Curtn's affinity with IDOL. Cholesterol content and LDLR expression effects were studied in high-fat diet Wistar rats. In vitro evaluations determined Curtn's influence on IDOL overexpression's LDL-C uptake and LDLR expression in hepatocytes. RESULTS: Lipids were the main differential metabolites in Curtn-treated HepG2 cells. Docking showed Curtn's higher affinity to IDOL's FERM domain compared to curcumin, suggesting potential competitive inhibition of IDOL's binding to LDLR. Curtn decreased liver cholesterol in Wistar rats and elevated LDLR expression. During in vitro experiments, Curtn significantly enhanced the effects of IDOL overexpression in HepG2 cells, leading to increased LDL-C uptake and elevated expression of LDL receptors. CONCLUSION: Curtn modulates the IDOL/LDLR pathway, enhancing LDL cholesterol uptake in hepatocytes. Combined with its PCSK9 influence, Curtn emerges as a potential hyperlipidemia therapy.


Assuntos
Curcumina , Curcumina/análogos & derivados , Niacina/análogos & derivados , Pró-Proteína Convertase 9 , Ratos , Animais , LDL-Colesterol , Curcumina/farmacologia , Ratos Wistar , Simulação de Acoplamento Molecular , Ubiquitina-Proteína Ligases/metabolismo , Hepatócitos/metabolismo , Receptores de LDL/metabolismo , Colesterol , Lipoproteínas LDL/metabolismo
20.
J Virol ; 98(1): e0084923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38174935

RESUMO

Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.


Assuntos
Hepacivirus , Hepatite C , Evasão da Resposta Imune , Lipoproteínas HDL , Proteínas do Envelope Viral , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Apolipoproteínas/metabolismo , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas do Envelope Viral/metabolismo , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...